In this paper, we derive explicit second-order necessary and sufficient optimality conditions of a local minimizer to an optimal control problem for a quasilinear second-order partial differential equation with a piecewise smooth but not differentiable nonlinearity in the leading term. The key argument rests on the analysis of level sets of the state. Specifically, we show that if a function vanishes on the boundary and its the gradient is different from zero on a level set, then this set decomposes into finitely many closed simple curves. Moreover, the level sets depend continuously on the functions defining these sets. We also prove the continuity of the integrals on the level sets. In particular, Green's first identity is shown to be applicable on an open set determined by two functions with nonvanishing gradients. In the second part to this paper, the explicit sufficient second-order conditions will be used to derive error estimates for a finite-element discretization of the control problem.


翻译:在本文中,我们得出了当地最小化器的明确的二级必要和充分的最佳条件,以优化控制准线性二级部分差异方程式的问题,在前一术语中,半线性二级部分差异方程式是平滑的,但不可区别的无线性。关键论点在于分析状态的等级组。具体地说,我们表明,如果边界上的函数消失,其梯度与某一等级的零不同,那么这一组就分解成数量有限的许多封闭的简单曲线。此外,水平组也持续取决于界定这些组的函数。我们还证明了水平组的内分的连续性。特别是,Green的第一个特性被显示适用于由两个函数和非加速梯度的两个函数所决定的开放型组。在本文第二部分,将使用明确的第二级条件来得出控制问题的有限分解的错误估计。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
40+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
0+阅读 · 2023年4月23日
Arxiv
0+阅读 · 2023年4月22日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
40+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员