In this paper, we derive explicit second-order necessary and sufficient optimality conditions of a local minimizer to an optimal control problem for a quasilinear second-order partial differential equation with a piecewise smooth but not differentiable nonlinearity in the leading term. The key argument rests on the analysis of level sets of the state. Specifically, we show that if a function vanishes on the boundary and its the gradient is different from zero on a level set, then this set decomposes into finitely many closed simple curves. Moreover, the level sets depend continuously on the functions defining these sets. We also prove the continuity of the integrals on the level sets. In particular, Green's first identity is shown to be applicable on an open set determined by two functions with nonvanishing gradients. In the second part to this paper, the explicit sufficient second-order conditions will be used to derive error estimates for a finite-element discretization of the control problem.
翻译:在本文中,我们得出了当地最小化器的明确的二级必要和充分的最佳条件,以优化控制准线性二级部分差异方程式的问题,在前一术语中,半线性二级部分差异方程式是平滑的,但不可区别的无线性。关键论点在于分析状态的等级组。具体地说,我们表明,如果边界上的函数消失,其梯度与某一等级的零不同,那么这一组就分解成数量有限的许多封闭的简单曲线。此外,水平组也持续取决于界定这些组的函数。我们还证明了水平组的内分的连续性。特别是,Green的第一个特性被显示适用于由两个函数和非加速梯度的两个函数所决定的开放型组。在本文第二部分,将使用明确的第二级条件来得出控制问题的有限分解的错误估计。</s>