Recent pretrained language models "solved" many reading comprehension benchmarks, where questions are written with access to the evidence document. However, datasets containing information-seeking queries where evidence documents are provided after the queries are written independently remain challenging. We analyze why answering information-seeking queries is more challenging and where their prevalent unanswerabilities arise, on Natural Questions and TyDi QA. Our controlled experiments suggest two headrooms -- paragraph selection and answerability prediction, i.e. whether the paired evidence document contains the answer to the query or not. When provided with a gold paragraph and knowing when to abstain from answering, existing models easily outperform a human annotator. However, predicting answerability itself remains challenging. We manually annotate 800 unanswerable examples across six languages on what makes them challenging to answer. With this new data, we conduct per-category answerability prediction, revealing issues in the current dataset collection as well as task formulation. Together, our study points to avenues for future research in information-seeking question answering, both for dataset creation and model development.


翻译:最近经过事先训练的语文模型“解决”了许多阅读理解基准,其中的问题是在查阅证据文件时填写的。然而,包含信息查询查询的数据集,在查询后提供证据文件是独立地填写的,这些数据集仍然具有挑战性。我们分析为什么回答信息查询查询的询问更具有挑战性,以及为什么在自然问题和Tydi QA上,它们普遍出现无法回答的问题。我们控制的实验显示有两个头目 -- -- 段落选择和可回答性预测,即对称证据文件是否包含对查询的答案。当提供黄金段落并知道何时不回答时,现有模型很容易超越人类说明者。然而,预测可回答性本身仍然具有挑战性。我们用六种语言手写了800个无法回答的示例,说明何为难以回答的问题。有了这个新数据,我们进行了每类可回答性预测,揭示了当前数据集收集中的问题以及任务配置。我们的研究共同指出,未来在解答信息查询问题时,无论是为了数据集的创建还是模型开发,如何,如何研究的途径。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【Coling-2020】面向机器阅读理解的双向认知思维网络
专知会员服务
9+阅读 · 2021年2月12日
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
66+阅读 · 2020年5月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
自由讨论 | KBQA从入门到放弃—入门篇
开放知识图谱
37+阅读 · 2017年9月2日
Incremental Reading for Question Answering
Arxiv
5+阅读 · 2019年1月15日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
QuAC : Question Answering in Context
Arxiv
4+阅读 · 2018年8月21日
Arxiv
6+阅读 · 2018年6月18日
VIP会员
相关资讯
【资源】问答阅读理解资源列表
专知
3+阅读 · 2020年7月25日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
自由讨论 | KBQA从入门到放弃—入门篇
开放知识图谱
37+阅读 · 2017年9月2日
Top
微信扫码咨询专知VIP会员