本文从互补学习系统理论的角度提出了一种新的阅读理解双向认知知识框架(BCKF)。它旨在模拟大脑中两种回答问题的思维方式,包括逆向思维和惯性思维。为了验证该框架的有效性,我们设计了一个相应的双向认知思维网络(BCTN),对文章进行编码,生成一个给定答案(问题)的问题(答案),并对双向知识进行解耦。该模型具有逆向推理的能力,有助于惯性思维产生更准确的答案。在DuReader数据集中观察到有效地改善,证实了我们的假设,即双向知识有助于QA任务。同时,这个新颖的框架也展示了机器阅读理解和认知科学的一个有趣的视角。