Knowledge Base Question Answering (KBQA) tasks that in-volve complex reasoning are emerging as an important re-search direction. However, most KBQA systems struggle withgeneralizability, particularly on two dimensions: (a) acrossmultiple reasoning types where both datasets and systems haveprimarily focused on multi-hop reasoning, and (b) across mul-tiple knowledge bases, where KBQA approaches are specif-ically tuned to a single knowledge base. In this paper, wepresent SYGMA, a modular approach facilitating general-izability across multiple knowledge bases and multiple rea-soning types. Specifically, SYGMA contains three high levelmodules: 1) KB-agnostic question understanding module thatis common across KBs 2) Rules to support additional reason-ing types and 3) KB-specific question mapping and answeringmodule to address the KB-specific aspects of the answer ex-traction. We demonstrate effectiveness of our system by evalu-ating on datasets belonging to two distinct knowledge bases,DBpedia and Wikidata. In addition, to demonstrate extensi-bility to additional reasoning types we evaluate on multi-hopreasoning datasets and a new Temporal KBQA benchmarkdataset on Wikidata, namedTempQA-WD1, introduced in thispaper. We show that our generalizable approach has bettercompetetive performance on multiple datasets on DBpediaand Wikidata that requires both multi-hop and temporal rea-soning
翻译:知识基础 问题解答 (KBQA) 任务 变化中的复杂推理正在形成,这是一个重要的再研究方向。然而,大多数 KBQA 系统在一般化方面挣扎,特别是在两个层面:(a) 数据集和系统主要侧重于多点推理的多重推理类型,以及(b) 跨模量知识库,KBQA 方法对一个单一的知识库进行了分辨性调整。在本文中,我们提供了SYGMA, 一种模块化方法,促进多种知识库和多种再解码类型之间的一般分解。具体地说,SYGMA包含三个高层次模块:(1) KB-敏感问题理解模块,这在KB2中是常见的2个规则,用以支持其他理性推理类型,3) KB 特定问题绘图和回答模块,用以处理答案的特有方面。我们通过对属于两个不同知识库的数据集(DBepedia 和Wiki- data ) 的系统进行蒸发,展示我们的系统的有效性。此外,SYGB- Stemali- data 需要我们更深入的多点的多点评估。