Relation detection is a core component for many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning that detects KB relations given an input question. Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different hierarchies of abstraction. Additionally, we propose a simple KBQA system that integrates entity linking and our proposed relation detector to enable one enhance another. Experimental results evidence that our approach achieves not only outstanding relation detection performance, but more importantly, it helps our KBQA system to achieve state-of-the-art accuracy for both single-relation (SimpleQuestions) and multi-relation (WebQSP) QA benchmarks.
翻译:关系探测是包括知识基础问题解答(KBQA)在内的许多NLP应用的核心组成部分。 在本文中,我们建议建立一个等级级的经常性神经网络,通过留级学习来检测KB关系,并给出一个输入问题。我们的方法是用深残余双向LSTMS来比较问题和关系名称,通过抽象的不同等级来比较。此外,我们提议了一个简单的KBQA系统,将连接实体和拟议关系探测器结合起来,以便相互加强。实验结果证明我们的方法不仅取得了杰出的关系探测性能,而且更重要的是,它帮助我们的KBQA系统在单一关系(问题)和多重关系(WebQSP) QA 基准方面都实现了最先进的准确性。