This work addresses an alternative approach for query expansion (QE) using a generative adversarial network (GAN) to enhance the effectiveness of information search in e-commerce. We propose a modified QE conditional GAN (mQE-CGAN) framework, which resolves keywords by expanding the query with a synthetically generated query that proposes semantic information from text input. We train a sequence-to-sequence transformer model as the generator to produce keywords and use a recurrent neural network model as the discriminator to classify an adversarial output with the generator. With the modified CGAN framework, various forms of semantic insights gathered from the query document corpus are introduced to the generation process. We leverage these insights as conditions for the generator model and discuss their effectiveness for the query expansion task. Our experiments demonstrate that the utilization of condition structures within the mQE-CGAN framework can increase the semantic similarity between generated sequences and reference documents up to nearly 10% compared to baseline models
翻译:这项工作涉及使用基因对抗网络(GAN)来提高电子商务信息搜索有效性的查询扩展替代方法(QE),以提高电子商务信息搜索的实效。我们提议了一个修改的QE条件性GAN(mQE-CGAN)框架,通过扩大查询范围,通过合成生成的查询来解决关键词,通过从文本输入中提出语义信息。我们用一个序列到序列的变压器模型作为生成关键词的生成器,并使用一个经常性神经网络模型作为区分与生成器对生成器的对抗输出的区分器。经过修改的CGAN框架,从查询文件库中收集的各种形式的语义洞见被引入生成过程。我们利用这些洞见作为生成器模型的条件,并讨论其对于查询扩展任务的有效性。我们的实验表明,利用 mQE-CGAN框架内的条件结构可以将生成的序列和参考文件之间的语义相似性提高到近10%。