The acquisition conditions for low-dose and high-dose CT images are usually different, so that the shifts in the CT numbers often occur. Accordingly, unsupervised deep learning-based approaches, which learn the target image distribution, often introduce CT number distortions and result in detrimental effects in diagnostic performance. To address this, here we propose a novel unsupervised learning approach for lowdose CT reconstruction using patch-wise deep metric learning. The key idea is to learn embedding space by pulling the positive pairs of image patches which shares the same anatomical structure, and pushing the negative pairs which have same noise level each other. Thereby, the network is trained to suppress the noise level, while retaining the original global CT number distributions even after the image translation. Experimental results confirm that our deep metric learning plays a critical role in producing high quality denoised images without CT number shift.
翻译:低剂量和高剂量CT图像的获取条件通常不同,因此CT数字的变化经常发生。 因此,在不受监督的深层次学习方法中,学习目标图像分布,往往引入CT数字扭曲,并在诊断性能中造成有害影响。 为了解决这个问题,我们在这里提出一种新型的、不受监督的低剂量CT重建学习方法,使用不完全的深层次量度学习。 关键的想法是通过拉动具有相同解剖结构的正对图像补丁来学习嵌入空间,并推动具有相同噪声水平的负对。 因此,网络经过培训,可以抑制噪音水平,同时即使在图像翻译之后仍保留原有的全球CT数字分布。 实验结果证实,我们深层次的衡量学习在不改变CT数字的情况下产生高质量的解密图像方面发挥着关键作用。