项目名称: 分级中空纳米结构M-Co-O@C(M=Ni, Mo)混合过渡金属氧化物可控构筑及电化学性能研究
项目编号: No.51474191
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 矿业工程
项目作者: 郭洪
作者单位: 云南大学
项目金额: 80万元
中文摘要: 随着新能源汽车、太阳能、风能及智能电网等能量储存与转换领域的快速发展,动力锂离子电池受到了空前的关注,开发新型高能负极材料成为锂离子电池领域的重要研究方向之一。过渡金属氧化物具有较高的理论容量,是目前商业化石墨电极的2-3倍。并且,存在可变价态和多样的物相结构,易于得到形貌独特、成分各异的纳微结构。同时,来源广泛,成本较低,是一类非常有发展前途的新一代高比能锂离子电池负极材料。但是存在导电性差、充放电过程中体积变化造成电极粉化等严重问题,导致循环性能不稳定。为进一步改善其电化学性能,本研究拟探索独特的生物模板、自组装模板及醇热诱导无模板的绿色合成策略,可控制备微观有序分级中空纳米结构M-Co-O(M=Ni,Mo)混合过渡金属氧化物高能储锂材料;探索材料的形成机制与控制原理;系统研究材料的电化学性能,合成条件、组成、形貌及微观结构与电化学性能的关系。为该类材料的研究开发提供实验和理论基础。
中文关键词: 锂离子电池;负极材料;核壳结构;纳米材料;电化学性能
英文摘要: High-performance Li-ion batteries get wider and wider application in the world and have become one of the most promising power sources to meet the increasing need for the fast development of electric vehicles, solar, wind, smart grid, other energy store and conversion devices. Transition metal oxides (TMOs) have attracted considerable interest for LIBs due to its high theoretic capacity, which are typically 2-3 times higher than those of the graphite/carbonbased electrode materials. Furthermore, the presence of multiple valences of the cations in such spinel TMOs systems is helpful to obtain the desirable nano/micro-structures. In addition, TMOs have wide resource and low cost. And thus, they can be acted as one of most promising anodic materials for the next generation of high energy lithium ion batteries. However, the major drawbacks of this class of materials are low electrical conductivity and the severe electrode pulverization caused by the drastic volumetric changes during repeated electrochemical cycling, and thus leads to cycle performance instability. Therefore, we intend to explore morphology-controlled and micro-order hollow M-Co-O@C (M=Ni, Mo) mixed transition-metal oxides(MTMOs) nanomaterials with multilevel interior structures by using green synthetic strategy of the bio-template, self-assembly template and free-template in order to further improve its electrochemical performance. Meanwhile the contolled synthesis mechanism of the desired materials are also discussed. Futhermore, electrochemical performance, synthesis conditions, components, morphology, structure and various electrochemical analysis methods are used to study the electrocheical reaction mechanism of the prepared M-Co-O@C (M=Ni, Mo) materials. Our efforts will provide experimental foundation and theoretical basis for MTMOs anodic materials of Li-ion batteries.
英文关键词: Lithium-ion battery;Anodic materials;Core-shell strcuture;Nanostructure materials;Electrochemical performance