Affect modeling is viewed, traditionally, as the process of mapping measurable affect manifestations from multiple modalities of user input to affect labels. That mapping is usually inferred through end-to-end (manifestation-to-affect) machine learning processes. What if, instead, one trains general, subject-invariant representations that consider affect information and then uses such representations to model affect? In this paper we assume that affect labels form an integral part, and not just the training signal, of an affect representation and we explore how the recent paradigm of contrastive learning can be employed to discover general high-level affect-infused representations for the purpose of modeling affect. We introduce three different supervised contrastive learning approaches for training representations that consider affect information. In this initial study we test the proposed methods for arousal prediction in the RECOLA dataset based on user information from multiple modalities. Results demonstrate the representation capacity of contrastive learning and its efficiency in boosting the accuracy of affect models. Beyond their evidenced higher performance compared to end-to-end arousal classification, the resulting representations are general-purpose and subject-agnostic, as training is guided though general affect information available in any multimodal corpus.


翻译:传统上,影响建模被视为影响建模的过程,因为可计量的绘图过程会影响多种用户输入模式的表现形式,从而影响标签。这种绘图通常通过端到端(manifestand-tofect-Affect)的机器学习过程推断出来。如果用一个普通的、主题差异性表述方法来训练考虑影响信息然后使用这种表述方法来影响模型呢?在本文件中,我们假设影响标签是一个影响代表性的组成部分,而不仅仅是培训信号,我们探索如何利用最近的对比性学习模式来发现一般高层次影响应用的演示,以便影响建模。我们为考虑影响信息的培训展示采用了三种不同的监督对比性学习方法。在这项初步研究中,我们测试RECOLA数据集中基于多种模式的用户信息而提出的振动预测方法。结果显示对比性学习的体现能力及其提高影响模型准确性的效率。除了证明与端到端的分类相比,由此产生的表述是通用的和主题的,因为培训是指导任何模式中的一般信息。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员