We discover a connection between the Benjamini-Hochberg (BH) procedure and the recently proposed e-BH procedure [Wang and Ramdas, 2022] with a suitably defined set of e-values. This insight extends to a generalized version of the BH procedure and the model-free multiple testing procedure in Barber and Cand\`es [2015] (BC) with a general form of rejection rules. The connection provides an effective way of developing new multiple testing procedures by aggregating or assembling e-values resulting from the BH and BC procedures and their use in different subsets of the data. In particular, we propose new multiple testing methodologies in three applications, including a hybrid approach that integrates the BH and BC procedures, a multiple testing procedure aimed at ensuring a new notion of fairness by controlling both the group-wise and overall false discovery rates (FDR), and a structure adaptive multiple testing procedure that can incorporate external covariate information to boost detection power. One notable feature of the proposed methods is that we use a data-dependent approach for assigning weights to e-values, significantly enhancing the efficiency of the resulting e-BH procedure. The construction of the weights is non-trivial and is motivated by the leave-one-out analysis for the BH and BC procedures. In theory, we prove that the proposed e-BH procedures with data-dependent weights in the three applications ensure finite sample FDR control. Furthermore, we demonstrate the efficiency of the proposed methods through numerical studies in the three applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员