Due to the scarcity in the wireless spectrum and limited energy resources especially in mobile applications, efficient resource allocation strategies are critical in wireless networks. Motivated by the recent advances in deep reinforcement learning (DRL), we address multi-agent DRL-based joint dynamic channel access and power control in a wireless interference network. We first propose a multi-agent DRL algorithm with centralized training (DRL-CT) to tackle the joint resource allocation problem. In this case, the training is performed at the central unit (CU) and after training, the users make autonomous decisions on their transmission strategies with only local information. We demonstrate that with limited information exchange and faster convergence, DRL-CT algorithm can achieve 90% of the performance achieved by the combination of weighted minimum mean square error (WMMSE) algorithm for power control and exhaustive search for dynamic channel access. In the second part of this paper, we consider distributed multi-agent DRL scenario in which each user conducts its own training and makes its decisions individually, acting as a DRL agent. Finally, as a compromise between centralized and fully distributed scenarios, we consider federated DRL (FDRL) to approach the performance of DRL-CT with the use of a central unit in training while limiting the information exchange and preserving privacy of the users in the wireless system. Via simulation results, we show that proposed learning frameworks lead to efficient adaptive channel access and power control policies in dynamic environments.


翻译:由于无线频谱缺乏,能源资源有限,特别是移动应用程序,高效的资源分配战略在无线网络中至关重要。受最近深入强化学习(DRL)进展的推动,我们在无线干扰网络中处理多剂DRL联合动态频道接入和电力控制。我们首先建议采用多剂DRL算法,进行集中培训(DRL-CT),以解决联合资源分配问题。在这种情况下,培训在中央单位(CU)进行,在培训之后,用户自行决定其传输战略,只有当地信息。我们证明,由于信息交流有限和更快的趋同,DRL-CT算法可以实现90%的绩效,这些绩效是通过加权最低平均差(WMMSE)的组合,在无线干扰网络干扰网络中进行。在本文第二部分,我们考虑分发多剂DRL的情景,其中每个用户作为DRL的代理机构开展自己的培训,并单独作出决定。最后,作为集中和完全分发的情景之间的妥协,我们认为,DRL-CT(FDRL)算法可以实现90%的绩效,同时,在持续使用RDR-L系统快速访问框架,同时使用S-real-real-deleg-real的学习框架,同时使用S-real-revial-legin-real-leginal-real-regal-leg-de,同时使用S-leg-legin viial

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年2月4日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员