In this paper, we study the Empirical Risk Minimization problem in the non-interactive Local Differential Privacy (LDP) model. First, we show that for the hinge loss function, there is an $(\epsilon, \delta)$-LDP algorithm whose sample complexity for achieving an error of $\alpha$ is only linear in the dimensionality $p$ and quasi-polynomial in other terms. Then, we extend the result to any $1$-Lipschitz generalized linear convex loss functions by showing that every such function can be approximated by a linear combination of hinge loss functions and some linear functions. Finally, we apply our technique to the Euclidean median problem and show that its sample complexity needs only to be quasi-polynomial in $p$, which is the first result with a sub-exponential sample complexity in $p$ for non-generalized linear loss functions. Our results are based on a technique, called polynomial of inner product approximation, which may be applicable to other problems.
翻译:在本文中,我们研究了本地差异隐私(LDP)非互动模式中的经验风险最小化问题。 首先,我们显示,对于断链损失功能,我们有一个美元(\ epsilon,\ delta)$-LDP算法,其实现美元差错的样本复杂性在维度($alpha$)中只是线性,在其它意义上是准极性。 然后,我们将结果扩大到任何1美元-Lipschitz通用线性线性内线性损失函数。 我们通过显示每一个这种函数都可以通过连接断链损失函数和某些线性函数的线性组合来近似。 最后,我们将我们的技术应用于欧几里德中位问题,并表明其取样复杂性只需要以美元为准极性,这是第一个结果,即非一般线性损失功能的亚特价($)样本复杂性以美元计算。 我们的结果基于一种技术,称为内部产品近似可适用于其它问题。