In this paper, we study the Empirical Risk Minimization problem in the non-interactive Local Differential Privacy (LDP) model. First, we show that for the hinge loss function, there is an $(\epsilon, \delta)$-LDP algorithm whose sample complexity for achieving an error of $\alpha$ is only linear in the dimensionality $p$ and quasi-polynomial in other terms. Then, we extend the result to any $1$-Lipschitz generalized linear convex loss functions by showing that every such function can be approximated by a linear combination of hinge loss functions and some linear functions. Finally, we apply our technique to the Euclidean median problem and show that its sample complexity needs only to be quasi-polynomial in $p$, which is the first result with a sub-exponential sample complexity in $p$ for non-generalized linear loss functions. Our results are based on a technique, called polynomial of inner product approximation, which may be applicable to other problems.


翻译:在本文中,我们研究了本地差异隐私(LDP)非互动模式中的经验风险最小化问题。 首先,我们显示,对于断链损失功能,我们有一个美元(\ epsilon,\ delta)$-LDP算法,其实现美元差错的样本复杂性在维度($alpha$)中只是线性,在其它意义上是准极性。 然后,我们将结果扩大到任何1美元-Lipschitz通用线性线性内线性损失函数。 我们通过显示每一个这种函数都可以通过连接断链损失函数和某些线性函数的线性组合来近似。 最后,我们将我们的技术应用于欧几里德中位问题,并表明其取样复杂性只需要以美元为准极性,这是第一个结果,即非一般线性损失功能的亚特价($)样本复杂性以美元计算。 我们的结果基于一种技术,称为内部产品近似可适用于其它问题。

0
下载
关闭预览

相关内容

经验风险最小化(ERM)是统计学习理论中的一个原则,它定义了一系列学习算法,并用于给出其性能的理论界限。经验风险最小化的策略认为,经验风险最小的模型是最优的模型。根据这一策略,按照经验风险最小化求最优模型就是求解最优化问题。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
4+阅读 · 2018年4月9日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员