The slate recommendation problem aims to find the "optimal" ordering of a subset of documents to be presented on a surface that we call "slate". The definition of "optimal" changes depending on the underlying applications but a typical goal is to maximize user engagement with the slate. Solving this problem at scale is hard due to the combinatorial explosion of documents to show and their display positions on the slate. In this paper, we introduce Slate Conditional Variational Auto-Encoders (Slate-CVAE) to generate optimal slates. To the best of our knowledge, this is the first conditional generative model that provides a unified framework for slate recommendation by direct generation. Slate-CVAE automatically takes into account the format of the slate and any biases that the representation causes, thus truly proposing the optimal slate. Additionally, to deal with large corpora of documents, we present a novel approach that uses pretrained document embeddings combined with a soft-nearest-neighbors layer within our CVAE model. Experiments show that on the simulated and real-world datasets, Slate-CVAE outperforms recommender systems that consists of greedily ranking documents by a significant margin while remaining scalable.
翻译:日期建议问题旨在找到一个“ 最优化” 的子集文档排序, 在一个我们称之为“ 日期 ” 的表面上展示。 定义“ 最优化” 的修改取决于基础应用程序, 但一个典型的目标是最大限度地扩大用户对板块的参与。 大规模解决这个问题是困难的, 因为要显示的文件的组合爆炸及其在板块上的显示位置。 在本文中, 我们引入了“ 条件性变异自动编码器( lat- CVAE) ” 以生成最佳的板块。 根据我们的知识, 这是第一个有条件的基因模型, 为直接生成的板块建议提供一个统一框架 。 日期- CVAE 自动考虑到板块的格式和代表导致的任何偏差, 从而真正提出最佳的板块。 此外, 要处理大块的文档的团团, 我们提出一种新办法, 使用预加限制的文档嵌入器, 与软近近邻相连接的板块层 。 实验显示, 在模拟和真实的磁带系统上, 推荐了模拟和真实的磁带的磁带 。