Many properties in the real world can't be directly observed, making them difficult to learn. To deal with this challenging problem, prior works have primarily focused on estimating those properties by using graded human scores as the target label in the training. Meanwhile, rating algorithms based on the Bradley-Terry model are extensively studied to evaluate the competitiveness of players based on their match history. In this paper, we introduce the Deep Bradley-Terry Rating (DBTR), a novel machine learning framework designed to quantify and evaluate properties of unknown items. Our method seamlessly integrates the Bradley-Terry model into the neural network structure. Moreover, we generalize this architecture further to asymmetric environments with unfairness, a condition more commonly encountered in real-world settings. Through experimental analysis, we demonstrate that DBTR successfully learns to quantify and estimate desired properties.
翻译:暂无翻译