Robot sequential decision-making in the real world is a challenge because it requires the robots to simultaneously reason about the current world state and dynamics, while planning actions to accomplish complex tasks. On the one hand, declarative languages and reasoning algorithms well support representing and reasoning with commonsense knowledge. But these algorithms are not good at planning actions toward maximizing cumulative reward over a long, unspecified horizon. On the other hand, probabilistic planning frameworks, such as Markov decision processes (MDPs) and partially observable MDPs (POMDPs), well support planning to achieve long-term goals under uncertainty. But they are ill-equipped to represent or reason about knowledge that is not directly related to actions. In this article, we present a novel algorithm, called iCORPP, to simultaneously estimate the current world state, reason about world dynamics, and construct task-oriented controllers. In this process, robot decision-making problems are decomposed into two interdependent (smaller) subproblems that focus on reasoning to "understand the world" and planning to "achieve the goal" respectively. Contextual knowledge is represented in the reasoning component, which makes the planning component epistemic and enables active information gathering. The developed algorithm has been implemented and evaluated both in simulation and on real robots using everyday service tasks, such as indoor navigation, dialog management, and object delivery. Results show significant improvements in scalability, efficiency, and adaptiveness, compared to competitive baselines including handcrafted action policies.
翻译:暂无翻译