It is quite common for functional data arising from imaging data to assume values in infinite-dimensional manifolds. Uncovering associations between two or more such nonlinear functional data extracted from the same object across medical imaging modalities can assist development of personalized treatment strategies. We propose a method for canonical correlation analysis between paired probability densities or shapes of closed planar curves, routinely used in biomedical studies, which combines a convenient linearization and dimension reduction of the data using tangent space coordinates. Leveraging the fact that the corresponding manifolds are submanifolds of unit Hilbert spheres, we describe how finite-dimensional representations of the functional data objects can be easily computed, which then facilitates use of standard multivariate canonical correlation analysis methods. We further construct and visualize canonical variate directions directly on the space of densities or shapes. Utility of the method is demonstrated through numerical simulations and performance on a magnetic resonance imaging dataset of Glioblastoma Multiforme brain tumors.


翻译:成象数据产生的功能性数据非常常见,以假设无限维体的值。从同一物体中从医学成像模式中提取的两个或两个以上非线性功能性数据之间的未覆盖关联,可以帮助发展个性化治疗战略。我们提出了一个方法,用于对结对概率密度或封闭平板曲线形状进行可视化的关联分析,这是生物医学研究中常用的方法,它结合了使用正切空间坐标对数据进行方便的线性化和尺寸减少。利用相应的元体是单位Hilbert球体的子层这一事实,我们描述了功能性数据对象的可计量性表达方式如何容易计算,从而便利使用标准的多变相性相相关分析方法。我们在密度或形体空间直接构建和可视化可视化的可视性变性方向。该方法的效用通过数字模拟和磁再感应成像数据集显示。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月12日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员