In this paper, we study an initial-boundary value problem of Kirchhoff type involving memory term for non-homogeneous materials. The purpose of this research is threefold. First, we prove the existence and uniqueness of weak solutions to the problem using the Galerkin method. Second, to obtain numerical solutions efficiently, we develop a L1 type backward Euler-Galerkin FEM, which is $O(h+k^{2-\alpha})$ accurate, where $\alpha~ (0<\alpha<1)$ is the order of fractional time derivative, $h$ and $k$ are the discretization parameters for space and time directions, respectively. Next, to achieve the optimal rate of convergence in time, we propose a fractional Crank-Nicolson-Galerkin FEM based on L2-1$_{\sigma}$ scheme. We prove that the numerical solutions of this scheme converge to the exact solution with accuracy $O(h+k^{2})$. We also derive a priori bounds on numerical solutions for the proposed schemes. Finally, some numerical experiments are conducted to validate our theoretical claims.
翻译:在本文中,我们研究了Kirchhoff类型的初始界限值问题,涉及非同质材料的记忆术语。本研究的目的有三重。首先,我们证明使用Galerkin方法解决该问题的薄弱办法的存在和独特性。第二,为了有效地获得数字解决方案,我们开发了一个L1型落后Euler-Galerkin FEM, 即$O(h+k ⁇ 2-alpha})准确, 美元=alpha~ (0. alpha<1)]是分时间衍生物、 $(h)和$(k)分别为空间和时间方向的分解参数的顺序。接下来,为了及时达到最佳的趋同率,我们提议根据L2美元- ⁇ gigma} 计划开发一个分数式的Crank-Nicolson-Galerkin FEM。我们证明这个办法的数字解决方案与精确的解决方案一致,准确值为$O(h+k ⁇ 2}。我们还得出了拟议方案的数字解决方案的前置。最后,我们进行了一些数字实验,以证实我们的理论索赔。