We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset. Specifically, we are given a set $T$ of $n$ points in $\mathbb{R}^d$ and a parameter $0< \alpha <\frac 1 2$ such that an $\alpha$-fraction of the points in $T$ are i.i.d. samples from a well-behaved distribution $\mathcal{D}$ and the remaining $(1-\alpha)$-fraction are arbitrary. The goal is to output a small list of vectors, at least one of which is close to the mean of $\mathcal{D}$. We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees, with running time $O(n^{1 + \epsilon_0} d)$, for any fixed $\epsilon_0 > 0$. All prior algorithms for this problem had additional polynomial factors in $\frac 1 \alpha$. We leverage this result, together with additional techniques, to obtain the first almost-linear time algorithms for clustering mixtures of $k$ separated well-behaved distributions, nearly-matching the statistical guarantees of spectral methods. Prior clustering algorithms inherently relied on an application of $k$-PCA, thereby incurring runtimes of $\Omega(n d k)$. This marks the first runtime improvement for this basic statistical problem in nearly two decades. The starting point of our approach is a novel and simpler near-linear time robust mean estimation algorithm in the $\alpha \to 1$ regime, based on a one-shot matrix multiplicative weights-inspired potential decrease. We crucially leverage this new algorithmic framework in the context of the iterative multi-filtering technique of Diakonikolas et al. '18, '20, providing a method to simultaneously cluster and downsample points using one-dimensional projections -- thus, bypassing the $k$-PCA subroutines required by prior algorithms.
翻译:我们研究列表可辨别的平均值估算问题, 对手可以在其中腐蚀大部分数据集。 具体地说, 我们的目标是输出一个小量的矢量列表, 其中至少一个是接近于 $\ mathb{R ⁇ d$的平均值。 我们开发了一个新的算法, 用于列表可辨别的平均估算, 近于最佳的统计保证, 运行时间 $( n _1 + \ epsilon_% d) 。 任何固定的 $\ epcal{D} 和其余的 美元( 1 -\ a dalpha) 的直径直径 。 用于这一问题的所有前算法都是任意的 。 在 美元和 美元直径的直径的直径中, 运行一个直径的直径的量值 。 我们开发了新的算法, 以一个直径直的直径直的直的基数值 。