Many physical processes such as weather phenomena or fluid mechanics are governed by partial differential equations (PDEs). Modelling such dynamical systems using Neural Networks is an emerging research field. However, current methods are restricted in various ways: they require prior knowledge about the governing equations, and are limited to linear or first-order equations. In this work we propose NeuralPDE, a model which combines convolutional neural networks (CNNs) with differentiable ODE solvers to model dynamical systems. We show that the Method of Lines used in standard PDE solvers can be represented using convolutions which makes CNNs the natural choice to parametrize arbitrary PDE dynamics. Our model can be applied to any data without requiring any prior knowledge about the governing PDE. We evaluate NeuralPDE on datasets generated by solving a wide variety of PDEs, covering higher orders, non-linear equations and multiple spatial dimensions.
翻译:许多物理过程,如天气现象或流体力学等,都受部分差异方程式(PDEs)的制约。使用神经网络模拟这种动态系统是一个新兴的研究领域。然而,目前的方法有多种限制:它们需要事先了解治理方程式,并限于线性或一级方程。在这项工作中,我们提议神经PDE,这是一个将具有不同可变神经网络和可变 ODE 求解器的模型结合到模拟动态系统。我们显示,标准 PDE 解答器中使用的线条方法可以使用 convolutions来代表,使CNN能够自然地选择对任意PDE 动态进行模拟。我们的模式可以应用到任何数据,而无需事先了解管理PDE 的任何知识。我们评估NeuralPDE的数据集,该数据集是通过解决多种PDE,涵盖更高顺序、非线性方程式和多个空间维度。