Many physical processes such as weather phenomena or fluid mechanics are governed by partial differential equations (PDEs). Modelling such dynamical systems using Neural Networks is an emerging research field. However, current methods are restricted in various ways: they require prior knowledge about the governing equations, and are limited to linear or first-order equations. In this work we propose NeuralPDE, a model which combines convolutional neural networks (CNNs) with differentiable ODE solvers to model dynamical systems. We show that the Method of Lines used in standard PDE solvers can be represented using convolutions which makes CNNs the natural choice to parametrize arbitrary PDE dynamics. Our model can be applied to any data without requiring any prior knowledge about the governing PDE. We evaluate NeuralPDE on datasets generated by solving a wide variety of PDEs, covering higher orders, non-linear equations and multiple spatial dimensions.


翻译:许多物理过程,如天气现象或流体力学等,都受部分差异方程式(PDEs)的制约。使用神经网络模拟这种动态系统是一个新兴的研究领域。然而,目前的方法有多种限制:它们需要事先了解治理方程式,并限于线性或一级方程。在这项工作中,我们提议神经PDE,这是一个将具有不同可变神经网络和可变 ODE 求解器的模型结合到模拟动态系统。我们显示,标准 PDE 解答器中使用的线条方法可以使用 convolutions来代表,使CNN能够自然地选择对任意PDE 动态进行模拟。我们的模式可以应用到任何数据,而无需事先了解管理PDE 的任何知识。我们评估NeuralPDE的数据集,该数据集是通过解决多种PDE,涵盖更高顺序、非线性方程式和多个空间维度。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
6+阅读 · 2021年6月24日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员