导读
Github作者zhuyiche发布了一篇关于异常检测(Anomaly detection)的论文列表,包含异常检测领域的经典方法、深度学习方法、应用及综述。
作者 | zhuyiche
编译 | Xiaowen
https://github.com/zhuyiche/awesome-anomaly-detection
01
经典方法
Isolation Forest - ICDM 2008.
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf
LOF: Identifying Density-Based Local Outliers - SIGMOD 2000.
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
Extended Isolation Forest
http://matias-ck.com/files/papers/Extended_Isolation_Forest.pdf
Support Vector Method for Novelty Detection - NIPS 2000
https://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection.pdf
One-Class SVMs for Document Classification - JMLR 2001.
http://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf
Support Vector Data Description
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.1425&rep=rep1&type=pdf
Can I Trust My One-Class Classification?
http://www.ipb.uni-bonn.de/pdfs/Mack2014Can.pdf
Efficient Anomaly Detection via Matrix Sketching - NIPS 2018
https://arxiv.org/pdf/1804.03065.pdf
PCA-based
robust deep and inductive anomaly detection - ECML PKDD 2017
https://arxiv.org/abs/1704.06743
A loss framework for calibrated anomaly detection - NIPS 2018
https://papers.nips.cc/paper/7422-a-loss-framework-for-calibrated-anomaly-detection.pdf
Clustering
A Practical Algorithm for Distributed Clustering and Outlier Detection - NIPS 2018
https://arxiv.org/pdf/1805.09495.pdf
Correlation
Detecting Multiple Periods and Periodic Patterns in Event Time Sequences - CIKM 2017.
http://chaozhang.org/papers/cikm17a.pdf
Ranking
ranking causal anomalies via temporal and dynamical analysis on vanishing correlations - KDD 2016.
https://www.kdd.org/kdd2016/papers/files/rfp0445-chengAemb.pdf
02
深度学习方法
Variational Autoencoder based Anomaly Detection using Reconstruction Probability
http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf
Auto-encoder
Learning sparse representation with variational auto-encoder for anomaly detection
https://ieeexplore.ieee.org/document/8386760/
Anomaly Detection with Robust Deep Autoencoders - KDD 2017.
http://dl.acm.org/authorize?N33358
DEEP AUTOENCODING GAUSSIAN MIXTURE MODEL FOR UNSUPERVISED ANOMALY DETECTION - ICLR 2018.
https://www.cs.ucsb.edu/~bzong/doc/iclr18-dagmm.pdf
Generative Probabilistic Novelty Detection with Adversarial Autoencoders - NIPS 2018
https://papers.nips.cc/paper/7915-generative-probabilistic-novelty-detection-with-adversarial-autoencoders.pdf
Variational Auto-encoder
Multidimensional Time Series Anomaly Detection: A GRU-based Gaussian Mixture Variational Autoencoder Approach - ACML 2018
http://proceedings.mlr.press/v95/guo18a/guo18a.pdf
A Multimodel Anomaly Detector for Robot-Assisted Feeding Using an LSTM-based Variational Autoencoder - IEEE Robotics and Automation Letters 2018.
https://arxiv.org/pdf/1711.00614.pdf
GAN based
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery - IPMI 2017.
https://arxiv.org/pdf/1703.05921.pdf
Efficient-GAN-Based Anomaly Detection ICLR Workshop 2018.
https://github.com/houssamzenati/Efficient-GAN-Anomaly-
Detection
Anomaly detection with generative adversarial networks - Reject by ICLR 2018, but was used as baseline method in recent published NIPS paper.
https://openreview.net/pdf?id=S1EfylZ0Z
Anomaly Detection in Dynamic Networks using Multi-view Time-Series Hypersphere Learning - CIKM 2017.
https://dl.acm.org/citation.cfm?id=3132964
Deep into Hypersphere: Robust and Unsupervised Anomaly Discovery in Dynamic Networks - IJCAI 2018.
https://www.ijcai.org/proceedings/2018/0378.pdf
One-Class Classification
High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning - Pattern Recognition 2018.
https://www.sciencedirect.com/science/article/abs/pii/S0031320316300267
Optimal single-class classification strategies - NIPS 2007
https://papers.nips.cc/paper/2987-optimal-single-class-classification-strategies.pdf
Deep One-Class Classification - ICML 2018.
http://proceedings.mlr.press/v80/ruff18a/ruff18a.pdf
Energy-based
Deep structured energy based models for anomaly detection - ICML 2016
https://arxiv.org/pdf/1605.07717.pdf
Time series
A Generalized Student-t Based Approach to Mixed-Type Anomaly Detection - AAAI 2013
http://www.nvc.cs.vt.edu/~ctlu/Publication/2013/AAAI-Lu-2013.pdf
Stochastic Online Anomaly Analysis for Streaming Time Series - IJCAI 2017
https://www.ijcai.org/proceedings/2017/0445.pdf
Long short term memory networks for anmomaly detection in time series
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection - ICML 2016 Workshop.
https://arxiv.org/pdf/1607.00148.pdf
Interpretation
Contextual Outlier Interpretation -IJCAI 2018
https://www.ijcai.org/proceedings/2018/0341.pdf
Evaulation Metrics
Precision and Recall for Time Series - NIPS 2018
http://papers.nips.cc/paper/7462-precision-and-recall-for-time-series.pdf
Geometric transformation
Deep Anomaly Detection Using Geometric Transformations - NIPS 2018
https://arxiv.org/pdf/1805.10917.pdf
FeedBack
Incorporating Feedback into Tree-based Anomaly Detection - KDD 2017 Workshop on Interactive Data Exploration and Analytics.
https://github.com/ai/size-limit
Feedback-Guided Anomaly Discovery via Online Optimization - KDD 2018.
http://web.engr.oregonstate.edu/~afern/papers/kdd18-siddiqui.pdf
03
异常检测应用
Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications - WWW 2018.
https://arxiv.org/pdf/1802.03903
Log
DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning - CCS 2017.
https://acmccs.github.io/papers/p1285-duA.pdf
Mining Invariants from Logs for System Problem Detection - USENIX 2010
https://www.usenix.org/legacy/event/atc10/tech/slides/lou.pdf
04
综述
Anomaly detection in dynamic networks: a survey
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.1347
Anomaly Detection : A Survey
http://cucis.ece.northwestern.edu/projects/DMS/publications/AnomalyDetection.pdf
A Survey of Recent Trends in One Class Classification
https://link.springer.com/chapter/10.1007/978-3-642-17080-5_21
A survey on unsupervised outlier detection in high‐dimensional numerical data
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.11161
-END-
专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!
请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~
专知《深度学习:算法到实战》课程全部完成!550+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!
点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程