The bilevel functional data under consideration has two sources of repeated measurements. One is to densely and repeatedly measure a variable from each subject at a series of regular time/spatial points, which is named as functional data. The other is to repeatedly collect one functional data at each of the multiple visits. Compared to the well-established single-level functional data analysis approaches, those that are related to high-dimensional bilevel functional data are limited. In this article, we propose a high-dimensional functional mixed-effect model (HDFMM) to analyze the association between the bilevel functional response and a large scale of scalar predictors. We utilize B-splines to smooth and estimate the infinite-dimensional functional coefficient, a sandwich smoother to estimate the covariance function and integrate the estimation of covariance-related parameters together with all regression parameters into one framework through a fast updating MCMC procedure. We demonstrate that the performance of the HDFMM method is promising under various simulation studies and a real data analysis. As an extension of the well-established linear mixed model, the HDFMM model extends the response from repeatedly measured scalars to repeatedly measured functional data/curves, while maintaining the ability to account for the relatedness among samples and control for confounding factors.


翻译:考虑中的双层功能数据有两个重复测量来源,其中之一是在一系列定期时间/空间点上,对每个主题的变量进行密集和反复测量,将其命名为功能性数据;另一是多次访问时反复收集一种功能数据;与既定的单层功能数据分析方法相比,与高维双层功能数据相关的数据分析方法是有限的;在本条中,我们提议了一个高维功能混合效应模型(HDFMMM),以分析双层功能反应与大规模天平线预测器之间的联系;我们利用B波流平滑和估计无限维功能系数,用三明治平滑剂估算共变函数,并通过快速更新的MC程序将共变参数和所有回归参数的估算纳入一个框架;我们表明,在各种模拟研究和真实数据分析中,HDFMMM方法的性能很有希望;作为成熟线性混合模型的延伸,HDFMMM模型将反应从反复测量的天平面系数扩大到反复测量的功能性数据/曲线控制因素,同时保持相关数据/曲线控制因素。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年12月24日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员