Blockchain adoption is reaching an all-time high, with a plethora of blockchain architectures being developed to cover the needs of applications eager to integrate blockchain into their operations. However, blockchain systems suffer from the trilemma trade-off problem, which limits their ability to scale without sacrificing essential metrics such as decentralisation and security. The balance of the trilemma trade-off is primarily dictated by the consensus protocol used. Since consensus protocols are designed to function well under specific system conditions, and consequently, due to the blockchain's complex and dynamic nature, systems operating under a single consensus protocol are bound to face periods of inefficiency. The work presented in this paper constitutes part of an effort to design a Digital Twin-based blockchain management framework to balance the trilemma trade-off problem, which aims to adapt the consensus process to fit the conditions of the underlying system. Specifically, this work addresses the problems of extracting the blockchain system and mirroring it in its digital twin by proposing algorithms that overcome the challenges posed by blockchains' decentralised and asynchronous nature and the fundamental problems of global state and synchronisation in such systems. The robustness of the proposed algorithms is experimentally evaluated.
翻译:暂无翻译