Pose estimation is the task of determining the 6D position of an object in a scene. Pose estimation aid the abilities and flexibility of robotic set-ups. However, the system must be configured towards the use case to perform adequately. This configuration is time-consuming and limits the usability of pose estimation and, thereby, robotic systems. Deep learning is a method to overcome this configuration procedure by learning parameters directly from the dataset. However, obtaining this training data can also be very time-consuming. The use of synthetic training data avoids this data collection problem, but a configuration of the training procedure is necessary to overcome the domain gap problem. Additionally, the pose estimation parameters also need to be configured. This configuration is jokingly known as grad student descent as parameters are manually adjusted until satisfactory results are obtained. This paper presents a method for automatic configuration using only synthetic data. This is accomplished by learning the domain randomization during network training, and then using the domain randomization to optimize the pose estimation parameters. The developed approach shows state-of-the-art performance of 82.0 % recall on the challenging OCCLUSION dataset, outperforming all previous methods with a large margin. These results prove the validity of automatic set-up of pose estimation using purely synthetic data.
翻译:Pose 估测是确定一个对象在现场的 6D 位置的任务。 模拟估算有助于机器人设置的能力和灵活性。 但是, 系统必须配置为适当运行的使用案例。 这种配置耗时, 限制了配置的可用性。 深度学习是通过直接从数据集中学习参数来克服这一配置程序的一种方法。 但是, 获取这种培训数据也可能非常耗时。 使用合成培训数据可以避免数据收集问题, 但配置培训程序对于克服域间差距问题是必要的。 此外, 还需要配置构成的估测参数。 这种配置是开玩笑的, 在获得令人满意的结果之前, 将参数手工调整为毕业学生血统。 本文提供了一种仅使用合成数据的自动配置方法。 这是通过在网络培训中学习域随机化, 然后使用域随机化来优化配置估算参数而实现的。 发达方法显示有挑战性的 OCCLUSION 数据设置的状态- 82.0, 提醒人们注意挑战性的 OCCLUSION 数据设置的状态, 还需要配置。 这种配置被误称为“ 梯号 ”,, 将所有先前的方法都自动估算为“ ” 。