Generating images according to natural language descriptions is a challenging task. In this work, we propose the Combined Attention Generative Adversarial Network (CAGAN) to generate photo-realistic images according to textual descriptions. The proposed CAGAN utilises two attention models: word attention to draw different sub-regions conditioned on related words; and squeeze-and-excitation attention to capture non-linear interaction among channels. With spectral normalisation to stabilise training, our proposed CAGAN improves the state of the art on the IS and FID on the CUB dataset and the FID on the more challenging COCO dataset. Furthermore, we demonstrate that judging a model by a single evaluation metric can be misleading by developing an additional model adding local self-attention which scores a higher IS, outperforming the state of the art on the CUB dataset, but generates unrealistic images through feature repetition.
翻译:根据自然语言描述生成图像是一项具有挑战性的任务。 在这项工作中,我们提议合并关注生成反反向网络(CAGAN)根据文字描述生成摄影现实图像。 拟议的CAGAN使用两种关注模式:以文字关注吸引不同次区域以相关文字为条件的文字关注;用挤压和刺激关注捕捉各频道之间的非线性互动。随着光谱标准化以稳定培训,我们提议的CAGAN改进了IS和FID在CUB数据集方面的先进水平,FID在更具挑战性的COCO数据集方面的先进水平。 此外,我们证明,用单一评价指标来判断一个模型,如果再开发一个模型,加上一个比CUB数据集高的本地自我关注度,比CUB数据集的先进程度高,但通过特征重复产生不切实际的图像,则会产生误导作用。