Current methods for pattern analysis in time series mainly rely on statistical features or probabilistic learning and inference methods to identify patterns and trends in the data. Such methods do not generalize well when applied to multivariate, multi-source, state-varying, and noisy time-series data. To address these issues, we propose a highly generalizable method that uses information theory-based features to identify and learn from patterns in multivariate time-series data. To demonstrate the proposed approach, we analyze pattern changes in human activity data. For applications with stochastic state transitions, features are developed based on Shannon's entropy of Markov chains, entropy rates of Markov chains, entropy production of Markov chains, and von Neumann entropy of Markov chains. For applications where state modeling is not applicable, we utilize five entropy variants, including approximate entropy, increment entropy, dispersion entropy, phase entropy, and slope entropy. The results show the proposed information theory-based features improve the recall rate, F1 score, and accuracy on average by up to 23.01\% compared with the baseline models and a simpler model structure, with an average reduction of 18.75 times in the number of model parameters.
翻译:时间序列模式分析的现行方法主要依靠统计特征或概率学习和推断方法来确定数据中的模式和趋势,这些方法在应用于多变量、多源、州式和噪音的时间序列数据时并不十分普及。为了解决这些问题,我们建议了一种非常普遍的方法,使用基于信息的理论特征来识别和学习多变量时间序列数据中的模式。为了证明拟议方法,我们分析了人类活动数据中的模式变化。关于具有随机状态转变的应用,根据香农对马尔科夫链的酶、马尔科夫链的酶率、马尔科夫链的酶生产率和马尔科夫链的冯纽曼酶。对于不适用状态模型的应用,我们使用五种基于信息的变方,包括大约的酶、递增的酶、分散的酶、阶段的酶和斜度的酶。结果显示基于信息的拟议理论特征改进了收回率、F1分和马尔科夫链的酶率、马尔科夫链的酶增殖率率和马尔科夫链的 von Nemann entropy enpy。对于不适用状态模型的应用,我们使用五种星变式,包括大约的酶、增增量、分散的酶、分散的酶、分数模型和精确到18.1%的模型。