Constraint-based control approaches offer a flexible way to specify robotic manipulation tasks and execute them on robots with many degrees of freedom. However, the specification of task constraints and their associated priorities usually requires a human-expert and often leads to tailor-made solutions for specific situations. This paper presents our recent efforts to automatically derive task constraints for a constraint-based robot controller from data and adapt them with respect to previously unseen situations (contexts). We use a programming-by-demonstration approach to generate training data in multiple variations (context changes) of a given task. From this data we learn a probabilistic model that maps context variables to task constraints and their respective soft task priorities. We evaluate our approach with 3 different dual-arm manipulation tasks on an industrial robot and show that it performs better in terms of reproduction accuracy than constraint-based controllers with manually specified constraints.
翻译:以严格控制为基础的控制方法提供了一种灵活的方式来具体指定机器人操作任务,并在多度自由的机器人上执行这些任务。然而,任务限制及其相关优先事项的具体规定通常需要一位人类专家,并往往导致针对具体情况的量身定做的解决办法。本文件介绍了我们最近为从数据中自动得出对以约束为基础的机器人控制者的任务限制,并根据先前的不为人知的情况(文本)对其进行调整而作出的努力。我们使用逐个编程的验证方法来生成关于一项特定任务多种变异(文字变化)的培训数据。我们从这些数据中学习了一种概率模型,其中绘制了任务限制及其各自软任务优先事项的变量。我们用工业机器人上三种不同的双武器操纵任务来评估我们的方法,并表明它比手动规定的限制下的基于约束的控制者在复制精度方面表现得更好。