We consider frugal splitting operators for finite sum monotone inclusion problems, i.e., splitting operators that use exactly one direct or resolvent evaluation of each operator of the sum. A novel representation of these operators in terms of what we call a generalized primal-dual resolvent is presented. This representation reveals a number of new results regarding lifting numbers, existence of solution maps, and parallelizability of the forward and backward evaluations. We show that the minimal lifting is $n-1-f$ where $n$ is the number of monotone operators and $f$ is the number of direct evaluations in the splitting. Furthermore, we show that this lifting number is only achievable as long as the first and last evaluations are resolvent evaluations. In the case of frugal resolvent splitting operators, these results are the same as the results of Ryu and Malitsky--Tam. The representation also enables a unified convergence analysis and we present a generally applicable theorem for the convergence and Fej\'er monotonicity of fixed point iterations of frugal splitting operators with cocoercive direct evaluations. We conclude by constructing a new convergent and parallelizable frugal splitting operator with minimal lifting.
翻译:我们考虑为有限和单调单调包容问题进行节制分裂操作者,即使用对每个操作者的一次直接或决断评价的分解操作者,即对每个操作者进行精确的直接或决断评价的分解操作者。我们提出这些操作者以我们所称的普遍初等和双向决断者为新的表述。这个表述揭示了一些关于提高数字、存在解决方案图以及前方和后方评价的平行性的新结果。我们表明,最小的提振是n-f美元,其中一美元是单调操作者的数目,而美元是分解过程中的直接评价的数目。此外,我们表明,只有第一次和最后的评价是决断的评价,才能实现这一提振数字。在节制分裂操作者中,这些结果与隆和马利特斯基-塔姆的结果相同。这种表述还使得能够进行统一的趋同分析,我们提出一个普遍适用的术语用于统一和Fej\'er单调点的固定分解操作者与连结直接评价的数目。我们通过与最低的分解分解操作者达成最低的平行的结。