We propose and analyze a new dynamical system with a closed-loop control law in a Hilbert space $\mathcal{H}$, aiming to shed light on the acceleration phenomenon for \textit{monotone inclusion} problems, which unifies a broad class of optimization, saddle point and variational inequality (VI) problems under a single framework. Given $A: \mathcal{H} \rightrightarrows \mathcal{H}$ that is maximal monotone, we propose a closed-loop control system that is governed by the operator $I - (I + \lambda(t)A)^{-1}$, where a feedback law $\lambda(\cdot)$ is tuned by the resolution of the algebraic equation $\lambda(t)\|(I + \lambda(t)A)^{-1}x(t) - x(t)\|^{p-1} = \theta$ for some $\theta > 0$. Our first contribution is to prove the existence and uniqueness of a global solution via the Cauchy-Lipschitz theorem. We present a simple Lyapunov function for establishing the weak convergence of trajectories via the Opial lemma and strong convergence results under additional conditions. We then prove a global ergodic convergence rate of $O(t^{-(p+1)/2})$ in terms of a gap function and a global pointwise convergence rate of $O(t^{-p/2})$ in terms of a residue function. Local linear convergence is established in terms of a distance function under an error bound condition. Further, we provide an algorithmic framework based on the implicit discretization of our system in a Euclidean setting, generalizing the large-step HPE framework. Although the discrete-time analysis is a simplification and generalization of existing analyses for a bounded domain, it is largely motivated by the above continuous-time analysis, illustrating the fundamental role that the closed-loop control plays in acceleration in monotone inclusion. A highlight of our analysis is a new result concerning $p^{th}$-order tensor algorithms for monotone inclusion problems, complementing the recent analysis for saddle point and VI problems.


翻译:我们提出并分析一个新的动态系统, 在一个 Hilbert 空间 $\ mathcal{H} 中采用闭路控制法, 旨在揭示 extliit{ monotone 包容问题的加速现象, 使一个广泛的优化、 马鞍点和变异不平等(VI) 问题在单一框架内得到统一。 鉴于 $A :\ mathcal{H}\\ rightrtrightrowrls\ motal{H} 美元是最高一元, 我们提议一个由操作者 $ - (I +\ lambda) (t) 调离轨控制系统管理的闭路控制系统 。 我们的第一个贡献证明了 ALlumbda (cdon) 最新变速分析 $lambda (t) (I) +\ lambda (t) 普通 A) _ 1xx(t) 上一个局域变速(t) - x(t) = listal condition lax lax lax a listal macal a listal listal fistress a a.

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员