A fundamental result in the study of graph homomorphisms is Lov\'asz's theorem that two graphs are isomorphic if and only if they admit the same number of homomorphisms from every graph. A line of work extending Lov\'asz's result to more general types of graphs was recently capped by Cai and Govorov, who showed that it holds for graphs with vertex and edge weights from an arbitrary field of characteristic 0. In this work, we generalize from graph homomorphism -- a special case of #CSP with a single binary function -- to general #CSP by showing that two sets $\mathcal{F}$ and $\mathcal{G}$ of arbitrary constraint functions are isomorphic if and only if the partition function of any #CSP instance is unchanged when we replace the functions in $\mathcal{F}$ with those in $\mathcal{G}$. We give two very different proofs of this result. First, we demonstrate the power of the simple Vandermonde interpolation technique of Cai and Govorov by extending it to general #CSP. Second, we give a proof using the intertwiners of the automorphism group of a constraint function set, a concept from the representation theory of compact groups. This proof is a generalization of a classical version of the recent proof of the Lov\'asz-type result by Man\v{c}inska and Roberson relating quantum isomorphism and homomorphisms from planar graphs.
翻译:图形同质性研究的一个根本结果是Lov\'asz 的理论是,如果两个图形从每个图形中都承认相同数量的同质性,那么两个图形就具有不形态性。 将Lov\'asz 的结果延伸至更一般类型的图形的工作线最近被Cai和Govorov封住了, 他们显示,它持有的图表是带有顶点和边缘重量的图和特征 0 的任意领域。 在这项工作中, 我们从图形同质性( 具有单一二进制函数的 #CSP 的特殊情况) 到一般的# CSP, 通过显示两种任意约束性功能的 $\ mathcal{F} 和 $\ mathcal{G} 来显示, 将Lovzal 的结果扩展为两套 $\ mark 的, 只有当我们用 $\ mathcal= cal=xxxxxxxx 的数值, 我们从简单的Vandermalalalalal yal yal exalalal exalal exmal exal exal yalation exmal- caltical yal yal yal ex 和通过一个普通化的系统化 和Gocal-cal-cal- creal- cal- cal- creal- cregaltra) 和制, 我们立, 我们制, 和制, 我们立法, 和制制制制制的法, 我们立制的分制的分级制的分法, 和制的分制的分法的分制的分法的分法的分法的分法的分法是不变的分法, 。的分法的分法的分。