Federated learning (FL) is a distributed learning framework where numerous clients collaborate with a central server to train a model without sharing local data. However, the standard federated optimization in real-world applications faces both statistical and system heterogeneity challenges, which result in unfavorable convergence behavior. The previous works attempted to modify the local training process (client-side) to tackle heterogeneity challenges. However, they ignored that the updates on the server side can coordinate the diverse local updates efficiently. This work explores the effect of server-side updates against heterogeneity issues. We first introduce the gradient diversity maximization direction findings, suggesting the global model moves continuously in this direction for fast and stable convergence. Then, we derive a novel server-side optimizer \textsc{FedAWARE} with rigorous convergence analysis for general non-convex settings. Our extensive experiments across multiple heterogeneous federated settings using four datasets showcase that \textsc{FedAWARE} achieves competitive convergence performance in comparison to state-of-the-art adaptive federated optimizers. Furthermore, our results show that \textsc{FedAWARE} can enhance the performance of FL algorithms as a plug-in module. Our source code is available at \url{https://github.com/dunzeng/FedAWARE}.
翻译:暂无翻译