In the general setting of long-memory multivariate time series, the long-memory characteristics are defined by two components. The long-memory parameters describe the autocorrelation of each time series. And the long-run covariance measures the coupling between time series, with general phase parameters. This wide class of models provides time series not necessarily Gaussian nor stationary. It is of interest to estimate the parameters: long-memory, long-run covariance and general phase. This inference is not possible using real wavelets decomposition or Fourier analysis. Our purpose is to define an inference approach based on a representation using quasi-analytic wavelets. We first show that the covariance of the wavelet coefficients provides an adequate estimator of the covariance structure including the phase term. Consistent estimators based on a Whittle approximation are then proposed. Simulations highlight a satisfactory behavior of the estimation on finite samples on linear time series and on multivariate fractional Brownian motions. An application on a real dataset in neuroscience is displayed, where long-memory and brain connectivity are inferred.
翻译:在长模多变时间序列的一般设置中,长模特性由两个组成部分来定义。长模参数用来描述每个时间序列的自动关系。长模参数用来测量每个时间序列的自动关系。长期共变量用来测量时间序列和一般阶段参数之间的混合。这一广泛的模型类别提供了时间序列,不一定是高斯或静止的。在长模、长期共变和一般阶段,估计参数是有意义的。这种推论不可能用真实的波子分解或Fourier 分析来进行。我们的目的是根据准分析波子的表示来定义一种推论方法。我们首先显示,波子系数的共变性为包括阶段期在内的共变结构提供了适当的估计符。然后提议以惠特尔近似为基础的一致估计符。模拟突出了对线性时间序列和多变数分数分数的布朗运动的定样样本的满意度估计。在神经科学中真实数据集的应用,在那里可以推断长期和大脑的连通性。