We study the non-parametric estimation of an unknown stationary density fV of an unobserved strictly stationary volatility process $(\bm V_t)_{t\geq 0}$ on $\IRp^2 := (0,\infty)^2$ based on discrete-time observations in a stochastic volatility model. We identify the underlying multiplicative measurement error model and build an estimator based on the estimation of the Mellin transform of the scaled, integrated volatility process and a spectral cut-off regularisation of the inverse of the Mellin transform. We prove that the proposed estimator leads to a consistent estimation strategy. A fully data-driven choice of $\bm k \in \IRp^2$ is proposed and upper bounds for the mean integrated squared risk are provided. Throughout our study, regularity properties of the volatility process are necessary for the analsysis of the estimator. These assumptions are fulfilled by several examples of volatility processes which are listed and used in a simulation study to illustrate a reasonable behaviour of the proposed estimator.
翻译:我们根据随机波动模型中的离散时间观测结果,对未观察到的固定密度 fV 进行非参数性估计,即一个未观察到的严格固定波动过程$(bm V_t)\t\geq 0}$(IRp%2 = 0,infty)2$(美元)进行非参数性估计,我们根据一个随机波动模型中的离散时间观测结果,确定潜在的多复制性测量误差模型,并根据对梅林大规模综合波动过程的Mellin变换和Mellin变换反面的光谱断裂的估算结果,建立一个估算器。我们证明,提议的估算器导致一个一致的估算战略。提出了完全以数据驱动为主的选择 $\bm k\ in\IRp%2$(美元),并提供了平均集成平方值风险的上限。我们的研究始终认为,波动过程的正常性特性对于估测器的反常数是必要的。这些假设通过模拟研究中列出并用来说明拟议估测算器的合理行为的几个波动过程的例子来实现。