This paper is concerned with forecast error, particularly in relation to loss reserving. This is generally regarded as consisting of three components, namely parameter, process and model errors. The first two of these components, and their estimation, are well understood, but less so model error. Model error itself is considered in two parts: one part that is capable of estimation from past data (internal model error), and another part that is not (external model error). Attention is focused here on internal model error. Estimation of this error component is approached by means of Bayesian model averaging, using the Bayesian interpretation of the LASSO. This is used to generate a set of admissible models, each with its prior probability and the likelihood of observed data. A posterior on the model set, conditional on the data, results, and an estimate of model error (contained in a loss reserve) is obtained as the variance of the loss reserve according to this posterior. The population of models entering materially into the support of the posterior may turn out to be thinner than desired, and bootstrapping of the LASSO is used to gain bulk. This provides the bonus of an estimate of parameter error also. It turns out that the estimates of parameter and model errors are entangled, and dissociation of them is at least difficult, and possibly not even meaningful. These matters are discussed. The majority of the discussion applies to forecasting generally, but numerical illustration of the concepts is given in relation to insurance data and the problem of insurance loss reserving.
翻译:本文涉及预测错误, 特别是与损失保留有关的预测错误。 一般认为, 此错误部分由三个部分组成, 即参数、 过程和模型错误。 前两个部分及其估计, 被很好地理解, 而不是模型错误。 模型错误本身被分为两个部分: 一个部分能够根据过去的数据估算( 内部模型错误), 另一个部分不是( 外部模型错误) 。 这里的注意力集中在内部模型错误上。 这个错误部分的估算是通过Bayesian 模型, 使用对 LASSO 的 Bayesian 解释来进行的。 这用来生成一套可接受模型, 每一个都具有先前的概率和观察到的数据的可能性。 模型上的上的一个外表象, 以数据、 结果和模型错误( 包含在损失储备中) 为条件, 以损失储备值的差异为条件( 外部模型的外观) 。 进入后方模型的群可能比预期更薄, 并且LASSO 的螺旋图是用来生成一套可接受的模型, 其先前概率关系 。 这为参数错误的推算值的比重值, 。 这些参数的推算的推算是最难的比重 。 这些参数的比重的比重值值值的比重值的比重值值值值值值值值值值值值值值值值值值值值值值值值值值是最小值值值值值值值值值值值值值的比值是最小。 。 。 。