Causal inference of treatment effects is a challenging undertaking in it of itself; inference for sequential treatments leads to even more hurdles. In precision medicine, one additional ambitious goal may be to infer about effects of dynamic treatment regimes (DTRs) and to identify optimal DTRs. Conventional methods for inferring about DTRs involve powerful semi-parametric estimators. However, these are not without their strong assumptions. Dynamic Marginal Structural Models (MSMs) are one semi-parametric approach used to infer about optimal DTRs in a family of regimes. To achieve this, investigators are forced to model the expected outcome under adherence to a DTR in the family; relatively straightforward models may lead to bias in the optimum. One way to obviate this difficulty is to perform a grid search for the optimal DTR. Unfortunately, this approach becomes prohibitive as the complexity of regimes considered increases. In recently developed Bayesian methods for dynamic MSMs, computational challenges may be compounded by the fact that at each grid point, a posterior mean must be calculated. We propose a manner by which to alleviate modelling difficulties for DTRs by using Gaussian process optimization. More precisely, we show how to pair this optimization approach with robust estimators for the causal effect of adherence to a DTR to identify optimal DTRs. We examine how to find the optimum in complex, multi-modal settings which are not generally addressed in the DTR literature. We further evaluate the sensitivity of the approach to a variety of modeling assumptions in the Gaussian process.


翻译:治疗效果的因果推断本身是一项具有挑战性的任务;顺序治疗的推断导致更多的障碍。在精密医学中,另一个雄心勃勃的目标可能是推断动态治疗制度(DTRs)的效果和确定最佳DTRs。关于DTRs的常规推论方法涉及强大的半参数估测器。然而,这些并非没有强有力的假设。动态边际结构模型(MSMs)是一种半参数方法,用来推断一个体制大家庭中的最佳DTRs的敏感性。为此,调查人员不得不在遵守DTR的情况下模拟预期的结果;相对直截了当的模式可能导致最佳的偏差。避免这一困难的一个办法是进行电网搜索,寻找最佳DTRs。不幸的是,D方法随着所考虑的制度的复杂性的增加而变得令人难以接受。在最近开发的Bayesian 动态MSMs方法中,计算模型的挑战可能因以下事实而变得更加复杂:在每一个网络点,必须进一步计算一个海面平均值。我们建议一种方法,用一种方法来减轻DTRsima 的模型模型在最优化的设置中如何找到最佳的路径。我们如何找到一个最精确的对DTRs进行最优化的方法。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
8+阅读 · 2020年10月9日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员