We present a technique that allows for improving on some relative greedy procedures by well-chosen (non-oblivious) local search algorithms. Relative greedy procedures are a particular type of greedy algorithm that start with a simple, though weak, solution, and iteratively replace parts of this starting solution by stronger components. Some well-known applications of relative greedy algorithms include approximation algorithms for Steiner Tree and, more recently, for connectivity augmentation problems. The main application of our technique leads to a $(1.5+\epsilon)$-approximation for Weighted Tree Augmentation, improving on a recent relative greedy based method with approximation factor $1+\ln 2 + \epsilon\approx 1.69$. Furthermore, we show how our local search technique can be applied to Steiner Tree, leading to an alternative way to obtain the currently best known approximation factor of $\ln 4 + \epsilon$. Contrary to prior methods, our approach is purely combinatorial without the need to solve an LP. Nevertheless, the solution value can still be bounded in terms of the well-known hypergraphic LP, leading to an alternative, and arguably simpler, technique to bound its integrality gap by $\ln 4$.


翻译:我们提出了一种技术,可以改进某些相对贪婪的程序,方法是通过精选(非隐微的)本地搜索算法。相对贪婪的程序是一种特殊的贪婪算法,从简单但微弱、解决方案开始,用更强的成分迭接地取代这一起始解决办法的一部分。一些众所周知的相对贪婪算法的应用包括施泰纳树的近似算法,以及最近出现的连接增强问题。我们技术的主要应用导致对重力树增殖采用1美元(1.5 ⁇ epsilon)的汇率调整,改进最近一种相对贪婪的基法,加上近似系数$2+\epsilon\approx 1.69美元。此外,我们展示了我们本地的搜索技术如何适用于施泰纳树,从而导致一种获得目前已知的最佳近似系数4 +\ epsilon$的替代方法。与以前的方法相反,我们的方法是纯粹的组合,无需解决一个LP。然而,解决办法的价值仍然可以被以众所周知的超额超值1 $ LP\ 的近似、简单和约束的替代技术。

0
下载
关闭预览

相关内容

【干货书】实体搜索,Entity-Oriented Search,358页pdf
专知会员服务
34+阅读 · 2021年4月9日
专知会员服务
39+阅读 · 2020年9月6日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
204+阅读 · 2020年1月13日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Arxiv
1+阅读 · 2021年9月14日
Arxiv
5+阅读 · 2021年2月8日
S4Net: Single Stage Salient-Instance Segmentation
Arxiv
10+阅读 · 2019年4月10日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
【干货书】实体搜索,Entity-Oriented Search,358页pdf
专知会员服务
34+阅读 · 2021年4月9日
专知会员服务
39+阅读 · 2020年9月6日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
204+阅读 · 2020年1月13日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Top
微信扫码咨询专知VIP会员