This paper develops a new class of conditional Markov jump processes with regime switching and paths dependence. The key novel feature of the developed process lies on its ability to switch the transition rate as it moves from one state to another with switching probability depending on the current state and time of the process as well as its past trajectories. As such, the transition from current state to another depends on the holding time of the process in the state. Distributional properties of the process are given explicitly in terms of the speed regimes represented by a finite number of different transition matrices, the probabilities of selecting regime membership within each state, and past realization of the process. In particular, it has distributional equivalent stochastic representation with a general mixture of Markov jump processes introduced in Frydman and Surya (2020). Maximum likelihood estimates (MLE) of the distribution parameters of the process are derived in closed form. The estimation is done iteratively using the EM algorithm. Akaike information criterion is used to assess the goodness-of-fit of the selected model. An explicit observed Fisher information matrix of the MLE is derived for the calculation of standard errors of the MLE. The information matrix takes on a simplified form of the general matrix formula of Louis (1982). Large sample properties of the MLE are presented. In particular, the covariance matrix for the MLE of transition rates is equal to the Cram\'er-Rao lower bound, and is less for the MLE of regime membership. The simulation study confirms these findings and shows that the parameter estimates are accurate, consistent, and have asymptotic normality as the sample size increases.


翻译:本文开发了一个新的有条件的马可夫跳跃进程类别,并配有政权转换和路径依赖。 发达过程的关键新特点在于它能够随着过渡率从一个国家向另一个国家转变,其转换概率取决于该进程的当前状态和时间以及过去的轨迹。 因此,从当前状态向另一个国家的过渡取决于该进程的持有时间。 这一过程的分布属性以数量有限的不同过渡矩阵、每个州内选择政权成员的概率以及该流程的过去实现来明确给出。 特别是,它具有分布等值的参数随机代表,同时根据Frydman和Surya(202020年)所引入的Markov跳跃动进程的一般混合物来转换概率。 流程分配参数的最大概率估计(MLE)以封闭的形式产生。 使用EM 算法进行迭接式估算。 Akaike信息标准用于评估所选模型的优劣性。 MLEE的明显观测结果表显示, 用于计算标准模型的正常比率(LE)的比值(MLE)的比值(LE)的比值(M)的比值(LE)的比值(LE)的比值(LE)的比值(LA)的比值(M)的比值(LA)的比值(M)的比值的比值的比值的比值的比值的比值的比值的比值的比值的比值的比值的比值是更低)的比值。

0
下载
关闭预览

相关内容

极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,是求估计的另一种方法,最大概似是1821年首先由德国数学家高斯(C. F. Gauss)提出,但是这个方法通常被归功于英国的统计学家罗纳德·费希尔(R. A. Fisher) 它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。极大似然原理的直观想法我们用下面例子说明。设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。一般说来,事件A发生的概率与某一未知参数theta有关, theta取值不同,则事件A发生的概率P(A/theta)也不同,当我们在一次试验中事件A发生了,则认为此时的theta值应是t的一切可能取值中使P(A/theta)达到最大的那一个,极大似然估计法就是要选取这样的t值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
inpluslab
8+阅读 · 2019年10月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Top
微信扫码咨询专知VIP会员