Sufficient conditions are provided under which the log-likelihood ratio test statistic fails to have a limiting chi-squared distribution under the null hypothesis when testing between one and two components under a general two-component mixture model, but rather tends to infinity in probability. These conditions are verified when the component densities describe continuous-time, discrete-statespace Markov chains and the results are illustrated via a parametric bootstrap simulation on an analysis of the migrations over time of a set of corporate bonds ratings. The precise limiting distribution is derived in a simple case with two states, one of which is absorbing which leads to a right-censored exponential scale mixture model. In that case, when centred by a function growing logarithmically in the sample size, the statistic has a limiting distribution of Gumbel extreme-value type rather than chi-squared.
翻译:提供了充分的条件,根据这些条件,在根据一般的两成分混合模型测试一个和两个组成部分时,在无效假设下,对一个和两个组成部分进行测试时,对准准差比比比测试统计没有限制基差分布,但有可能是无限的。当部件密度描述连续时间、离散空间Markov链时,就会核实这些条件,结果通过对一组公司债券评级的一段时间迁移情况进行分析的参数靴式模拟来说明。精确限制分布是在两个州的一个简单案例中产生的,其中一个州正在吸收,从而导致一种右检查的指数级混合模型。在这种情况下,如果以一个功能为核心,在抽样规模上不断增长的逻辑,统计会限制Gumbel极端价值类型的分布,而不是基夸德的分布。