We study the Bayesian inverse problem for inferring the log-normal slowness function of the eikonal equation given noisy observation data on its solution at a set of spatial points. We study approximation of the posterior probability measure by solving the truncated eikonal equation, which contains only a finite number of terms in the Karhunen-Loeve expansion of the slowness function, by the Fast Marching Method. The error of this approximation in the Hellinger metric is deduced in terms of the truncation level of the slowness and the grid size in the Fast Marching Method resolution. It is well known that the plain Markov Chain Monte Carlo procedure for sampling the posterior probability is highly expensive. We develop and justify the convergence of a Multilevel Markov Chain Monte Carlo method. Using the heap sort procedure in solving the forward eikonal equation by the Fast Marching Method, our Multilevel Markov Chain Monte Carlo method achieves a prescribed level of accuracy for approximating the posterior expectation of quantities of interest, requiring only an essentially optimal level of complexity. Numerical examples confirm the theoretical results.


翻译:我们研究贝叶斯的反问题, 以在一组空间点对电离方程式的解析方法进行噪音观测数据, 来推断电离方程式的逻辑异常慢化功能。 我们通过解答短线电离方程式来研究后继概率测量的近似值, 该方程式中只有卡胡宁-利奥的慢化功能扩展的有限数量, 即快速进取法。 希灵格指标中的这种近似值的错误, 是从快速进取法解法中慢化和网格大小的截断率水平来推导的。 众所周知, 用于取样远端概率的马可夫链- 蒙特卡洛平原程序非常昂贵。 我们开发了多层马可夫链- 蒙特卡洛方法, 并论证了多层马尔科夫链- 的汇合法。 我们的多层马可夫链- 蒙特卡洛 方法在用快速进法解决远端电子方程式解决远端电子方程式时, 达到了一个规定的准确度, 接近后端预期的利息数量, 只需要一个基本最优化的复杂程度。 数字实例证实了理论结果 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月26日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员