In the recent years, deep learning techniques have shown great success in various tasks related to inverse problems, where a target quantity of interest can only be observed through indirect measurements by a forward operator. Common approaches apply deep neural networks in a post-processing step to the reconstructions obtained by classical reconstruction methods. However, the latter methods can be computationally expensive and introduce artifacts that are not present in the measured data and, in turn, can deteriorate the performance on the given task. To overcome these limitations, we propose a class of equivariant neural networks that can be directly applied to the measurements to solve the desired task. To this end, we build appropriate network structures by developing layers that are equivariant with respect to data transformations induced by well-known symmetries in the domain of the forward operator. We rigorously analyze the relation between the measurement operator and the resulting group representations and prove a representer theorem that characterizes the class of linear operators that translate between a given pair of group actions. Based on this theory, we extend the existing concepts of Lie group equivariant deep learning to inverse problems and introduce new representations that result from the involved measurement operations. This allows us to efficiently solve classification, regression or even reconstruction tasks based on indirect measurements also for very sparse data problems, where a classical reconstruction-based approach may be hard or even impossible. We illustrate the effectiveness of our approach in numerical experiments and compare with existing methods.
翻译:暂无翻译