Using historical data to predict future events has many applications in the real world, such as stock price prediction; the robot localization. In the past decades, the Convolutional long short-term memory (LSTM) networks have achieved extraordinary success with sequential data in the related field. However, traditional recurrent neural networks (RNNs) keep the hidden states in a deterministic way. In this paper, we use the particles to approximate the distribution of the latent state and show how it can extend into a more complex form, i.e., the Encoder-Decoder mechanism. With the proposed continuous differentiable scheme, our model is capable of adaptively extracting valuable information and updating the latent state according to the Bayes rule. Our empirical studies demonstrate the effectiveness of our method in the prediction tasks.
翻译:利用历史数据预测未来事件在现实世界中有许多应用,例如股票价格预测;机器人本地化。在过去几十年中,革命性长期短期记忆(LSTM)网络在相关领域相继数据方面取得了非凡的成功。然而,传统的经常性神经网络(RNNS)以决定性的方式将隐藏状态保留下来。在本文中,我们利用粒子来估计潜伏状态的分布,并展示它如何发展到更复杂的形式,即恩科德尔-德罗德机制。根据拟议的持续差异方案,我们的模型能够根据贝耶斯规则,适应性地提取有价值的信息,更新潜伏状态。我们的经验研究表明了我们的方法在预测任务中的有效性。