A finite element-based image segmentation strategy enhanced by an anisotropic mesh adaptation procedure is presented. The methodology relies on a split Bregman algorithm for the minimisation of a region-based energy functional and on an anisotropic recovery-based error estimate to drive mesh adaptation. More precisely, a Bayesian energy functional is considered to account for image spatial information, ensuring that the methodology is able to identify inhomogeneous spatial patterns in complex images. In addition, the anisotropic mesh adaptation guarantees a sharp detection of the interface between background and foreground of the image, with a reduced number of degrees of freedom. The resulting split-adapt Bregman algorithm is tested on a set of real images showing the accuracy and robustness of the method, even in the presence of Gaussian, salt and pepper and speckle noise.
翻译:采用了一种基于元素的有限成像分化战略,通过厌食性网格适应程序加以强化。该方法依靠一种分裂的布雷格曼算法,以尽量减少以区域为基础的能源功能,依靠一种基于厌食性恢复的错误估计,以驱动网格适应。更准确地说,一种巴伊西亚能源功能被视为考虑图像空间信息,确保该方法能够识别复杂图像中的不相容空间模式。此外,对厌食性网格的适应保证了对图像背景和前景之间的界面的清晰探测,降低了自由度。由此产生的分流型布雷格曼算法在一套真实图像上进行了测试,显示该方法的准确性和稳健性,即使高斯、盐和辣椒以及分光线噪音也存在。