Graph partitioning is a common solution to scale up the graph algorithms, and shortest path (SP) computation is one of them. However, the existing solutions typically have a fixed partition method with a fixed path index and fixed partition structure, so it is unclear how the partition method and path index influence the pathfinding performance. Moreover, few studies have explored the index maintenance of partitioned SP (PSP) on dynamic graphs. To provide a deeper insight into the dynamic PSP indexes, we systematically deliberate on the existing works and propose a universal scheme to analyze this problem theoretically. Specifically, we first propose two novel partitioned index strategies and one optimization to improve index construction, query answering, or index maintenance of PSP index. Then we propose a path-oriented graph partitioning classification criteria for easier partition method selection. After that, we re-couple the dimensions in our scheme (partitioned index strategy, path index, and partition structure) to propose five new partitioned SP indexes that are more efficient either in the query or update on different networks. Finally, we demonstrate the effectiveness of our new indexes by comparing them with state-of-the-art PSP indexes through comprehensive evaluations.
翻译:暂无翻译