Estimating information-theoretic quantities such as entropy and mutual information is central to many problems in statistics and machine learning, but challenging in high dimensions. This paper presents estimators of entropy via inference (EEVI), which deliver upper and lower bounds on many information quantities for arbitrary variables in a probabilistic generative model. These estimators use importance sampling with proposal distribution families that include amortized variational inference and sequential Monte Carlo, which can be tailored to the target model and used to squeeze true information values with high accuracy. We present several theoretical properties of EEVI and demonstrate scalability and efficacy on two problems from the medical domain: (i) in an expert system for diagnosing liver disorders, we rank medical tests according to how informative they are about latent diseases, given a pattern of observed symptoms and patient attributes; and (ii) in a differential equation model of carbohydrate metabolism, we find optimal times to take blood glucose measurements that maximize information about a diabetic patient's insulin sensitivity, given their meal and medication schedule.
翻译:估计信息-理论数量,如昆虫和相互信息,是统计和机器学习中许多问题的核心,但具有很高的难度。本文展示了通过推论(EEVI)测量的酶值,在概率型基因模型中,对任意变量的许多信息数量提供上下界限。根据观察到的症状和病人特征的模式,这些测算员使用建议分布式家庭的重要抽样,包括摊销变异推断值和相继的蒙特卡洛,这些样本可针对目标模型进行定制,并用于高精确地挤压真实信息值。我们展示了EEVI的一些理论特性,并展示了在医学领域两个问题上的可缩放性和有效性:(一) 在诊断肝功能失调的专家系统中,我们根据对潜在疾病的认识程度,根据观察到的症状和病人特征,对医学测试进行排序;(二) 在碳水化合物新陈代谢差异方程模型中,我们找到最佳的时间进行血糖测量,以最大限度地了解糖尿病患者的胰岛敏感度信息。