Political regimes have been changing throughout human history. After the apparent triumph of liberal democracies at the end of the twentieth century, Francis Fukuyama and others have been arguing that humankind is approaching an `end of history' (EoH) in the form of a universality of liberal democracies. This view has been challenged by recent developments that seem to indicate the rise of defective democracies across the globe. There has been no attempt to quantify the expected EoH with a statistical approach. In this study, we model the transition between political regimes as a Markov process and -- using a Bayesian inference approach -- we estimate the transition probabilities between political regimes from time-series data describing the evolution of political regimes from 1800--2018. We then compute the steady state for this Markov process which represents a mathematical abstraction of the EoH and predicts that approximately 46 % of countries will be full democracies. Furthermore, we find that, under our model, the fraction of autocracies in the world is expected to increase for the next half-century before it declines. Using random-walk theory, we then estimate survival curves of different types of regimes and estimate characteristic lifetimes of democracies and autocracies of 244 years and 69 years, respectively. Quantifying the expected EoH allows us to challenge common beliefs about the nature of political equilibria. Specifically, we find no statistical evidence that the EoH constitutes a fixed, complete omnipresence of democratic regimes.


翻译:在整个人类历史中,政治制度一直在变化;在二十世纪末自由民主的明显胜利之后,弗朗西斯·福山和其他人一直认为,人类正在以自由民主的普遍性形式接近“历史末期”的“历史末期”(EoH),这种观点受到最近事态发展的挑战,这些事态发展似乎表明全球有缺陷的民主正在崛起;没有试图用统计方法量化预期的EoH;在本研究中,我们以马可夫进程为政治政权的过渡模式,而利用巴耶斯的推论方法,我们从描述1800-2018年政治制度演变的时间序列数据来估计政治政权之间的过渡概率;我们随后对马可夫进程的稳定状态进行了评估,这代表了EoH的数学抽象,预测大约46%的国家将完全实现民主;此外,我们发现,在我们的模式下个半世纪中,世界的完全的独裁现象将会增加。我们用随机的理论来估计,然后我们用描述不同类型民主制度的生存曲线的曲线来估计从1800至2018年的政治体制的演变。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月21日
Arxiv
0+阅读 · 2022年12月9日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员