Multiple Object Tracking (MOT) is widely investigated in computer vision with many applications. Tracking-By-Detection (TBD) is a popular multiple-object tracking paradigm. TBD consists of the first step of object detection and the subsequent of data association, tracklet generation, and update. We propose a Similarity Learning Module (SLM) motivated from the Siamese network to extract important object appearance features and a procedure to combine object motion and appearance features effectively. This design strengthens the modeling of object motion and appearance features for data association. We design a Similarity Matching Cascade (SMC) for the data association of our SMILEtrack tracker. SMILEtrack achieves 81.06 MOTA and 80.5 IDF1 on the MOTChallenge and the MOT17 test set, respectively.
翻译:多物体跟踪(MOT)是通过多种应用的计算机视野进行广泛调查的。跟踪-By-检测(TBD)是一个流行的多物体跟踪模式。跟踪-By-检测(TBD)由物体探测的第一步和随后的数据关联、跟踪生成和更新组成。我们提议了一个类似学习模块(SLM),由Siamse网络发起,以提取重要的物体外观特征,并建立一个程序,将物体运动和外观特征有效地结合起来。这一设计加强了数据关联的物体动作和外观特征的模型化。我们为SMILE跟踪器的数据组合设计了一个相似的级联。SMILE跟踪仪在MOTChallenge和MOT17测试集上分别实现了81.06MOTA和80.51 UNFTA。