The level of granularity of open data often conflicts the benefits it can provide. Less granular data can protect individual privacy, but to certain degrees, sabotage the promise of open data to promote transparency and assist research. Similar in the urban setting, aggregated urban data at high-level geographic units can mask out the underline particularities of city dynamics that may vary at lower areal levels. In this work, we aim to synthesize fine-grained, high resolution urban data, by breaking down aggregated urban data at coarse, low resolution geographic units. The goal is to increase the usability and realize the values as much as possible of highly aggregated urban data. To address the issue of simplicity of some traditional disaggregation methods -- 1) we experimented with numerous neural-based models that are capable of modeling intricate non-linear relationships among features. Neural methods can also leverage both spatial and temporal information concurrently. We showed that all neural methods perform better than traditional disaggregation methods. Incorporating the temporal information further enhances the results. 2) We proposed a training approach for disaggregation task, Chain-of-Training (COT), that can be incorporated into any of the training-based models. COT adds transitional disaggregation steps by incorporating intermediate geographic dimensions, which enhances the predictions at low geographic level and boosts the results at higher levels. 3) We adapted the idea of reconstruction (REC) from super-resolution domain in our disaggregation case -- after disaggregating from low to high geographic level, we then re-aggregate back to the low level from our generated high level values. Both strategies improved disaggregation results on three datasets and two cities we tested on.
翻译:暂无翻译