We present a procedure for efficiently sampling colors in the CONGEST model. It allows nodes whose number of colors exceeds their number of neighbors by a constant fraction to sample up to $\Theta(\log n)$ semi-random colors unused by their neighbors in $O(1)$ rounds, even in the distance-2 setting. This yields algorithms with $O(\log^* \Delta)$ complexity for different edge-coloring, vertex coloring, and distance-2 coloring problems, matching the best possible. In particular, we obtain an $O(\log^* \Delta)$-round CONGEST algorithm for $(2\Delta-1)$-edge coloring when $\Delta \ge \log^2 n$, and a poly($\log\log n$)-round algorithm in general. The sampling procedure is inspired by a seminal result of Newman in communication complexity.


翻译:在 CONEST 模型中,我们提出了一个高效取样颜色的程序。 它允许颜色数量超过邻居数量的节点, 其数量以恒定分数超过邻居数量的节点, 样本中邻居在$O( log n) 中未使用的半随机颜色值最高为$( 1) 美元, 即使在距离2 设置中也是如此。 这可以产生不同边缘颜色、 脊椎颜色和距离-2 颜色问题复杂度的计算法。 特别是, 当$\\ Delta\ log\\\\ delta 2 n美元和一般的多元( log\ log n$) 圆形算法时, 我们获得了 $( log \\ \ delta) $( ) 圆形 CONEST 算法, 并得到了 $( log\ log\ log n$) 。 采样程序受到新人通信复杂性的半结果的启发。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
101+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
1+阅读 · 2021年4月1日
Arxiv
0+阅读 · 2021年4月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员