In the pliable index coding (PICOD) problem, a server is to serve multiple clients, each of which possesses a unique subset of the complete message set as side information and requests a new message which it does not have. The goal of the server is to do this using as few transmissions as possible. This work presents a hypergraph coloring approach to the PICOD problem. A \textit{conflict-free coloring} of a hypergraph is known from literature as an assignment of colors to its vertices so that each edge of the graph contains one uniquely colored vertex. For a given PICOD problem represented by a hypergraph consisting of messages as vertices and request-sets as edges, we present achievable PICOD schemes using conflict-free colorings of the PICOD hypergraph. Various graph theoretic parameters arising out of such colorings (and some new variants) then give a number of upper bounds on the optimal PICOD length, which we study in this work. Our achievable schemes based on hypergraph coloring include scalar as well as vector linear PICOD schemes. For the scalar case, using the correspondence with conflict-free coloring, we show the existence of an achievable scheme which has length $O(\log^2\Gamma),$ where $\Gamma$ refers to a parameter of the hypergraph that captures the maximum `incidence' number of other edges on any edge. This result improves upon known achievability results in PICOD literature, in some parameter regimes.
翻译:在可信任的索引编码( PICOD) 问题中, 服务器是为多个客户服务, 每个客户都拥有作为侧边信息而设置的完整信息的独特子集, 并请求它没有的新信息。 服务器的目标是使用尽可能多的传输来做到这一点。 这项工作为 PICOD 问题提供了一个高光色化方法 。 从文献中可以知道高光化( textit{ 没有冲突色彩化 ) 是一个高光化的颜色, 以便图形的每个边缘都包含一个独特的彩色顶端。 对于由高光化和请求设置为边缘的信息组成的 PICOD 文献问题, 我们使用 PICOD 高光化的无冲突颜色化来提供可实现的 PICOD 方案。 各种图表的参数来自这些颜色化( 和一些新变色化), 然后在我们研究的 PICODD 最优长度上可以设定一些上限的界限。 我们基于高光谱的系统可以实现的颜色化和矢量化的 PICO$O 方案, 显示我们所知道的可实现的 的 比例化的 。