Convex clustering has recently garnered increasing interest due to its attractive theoretical and computational properties, but its merits become limited in the face of high-dimensional data. In such settings, pairwise affinity terms that rely on $k$-nearest neighbors become poorly specified and Euclidean measures of fit provide weaker discriminating power. To surmount these issues, we propose to modify the convex clustering objective so that feature weights are optimized jointly with the centroids. The resulting problem becomes biconvex, and as such remains well-behaved statistically and algorithmically. In particular, we derive a fast algorithm with closed form updates and convergence guarantees, and establish finite-sample bounds on its prediction error. Under interpretable regularity conditions, the error bound analysis implies consistency of the proposed estimator. Biconvex clustering performs feature selection throughout the clustering task: as the learned weights change the effective feature representation, pairwise affinities can be updated adaptively across iterations rather than precomputed within a dubious feature space. We validate the contributions on real and simulated data, showing that our method effectively addresses the challenges of dimensionality while reducing dependence on carefully tuned heuristics typical of existing approaches.


翻译:最近,由于具有吸引力的理论和计算特性,混凝土组群最近引起了越来越多的兴趣,但由于它的理论和计算特性,它的优点在高维数据面前变得有限。在这样的背景下,依赖美元最接近的邻居的双向亲近术语变得不够明确,而Eucloided的适配测量方法提供了较弱的差别性力量。为了克服这些问题,我们提议修改混凝土组群目标,使特征权重与机器人共同优化。由此产生的问题变成了双向相近,因此在统计和算法上仍然保持良好的习惯。特别是,我们用封闭式更新和趋同保证来得出快速算法,并在预测错误上建立定序的模缩界限。在不易解释的定期条件下,误差分析意味着拟议估算者的一致性。 双convex组群集在整个集群任务中进行特征选择:随着所学的权重改变有效的特征代表,双向的亲近度可以适应性地在不同的地貌空间中进行更新,而不是预先估计。我们验证了真实和模拟数据上的贡献,同时仔细地调整了我们的方法对于典型的高度依赖性的方法,从而有效地应对了目前维观的挑战。

1
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
专知会员服务
42+阅读 · 2020年12月18日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月24日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
7+阅读 · 2020年8月7日
Arxiv
3+阅读 · 2020年2月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年5月24日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
7+阅读 · 2020年8月7日
Arxiv
3+阅读 · 2020年2月5日
Top
微信扫码咨询专知VIP会员