In this paper, a new data-adaptive method, called DAIS (Data Adaptive ISolation), is introduced for the estimation of the number and the location of change-points in a given data sequence. The proposed method can detect changes in various different signal structures; we focus on the examples of piecewise-constant and continuous, piecewise-linear signals. We highlight, however, that our algorithm can be extended to other frameworks, such as piecewise-quadratic signals. The data-adaptivity of our methodology lies in the fact that, at each step, and for the data under consideration, we search for the most prominent change-point in a targeted neighborhood of the data sequence that contains this change-point with high probability. Using a suitably chosen contrast function, the change-point will then get detected after being isolated in an interval. The isolation feature enhances estimation accuracy, while the data-adaptive nature of DAIS is advantageous regarding, mainly, computational complexity and accuracy. The simulation results presented indicate that DAIS is at least as accurate as state-of-the-art competitors.
翻译:暂无翻译